SRI International

Multiple Applications of Polybenzimidazole (PBI) Hollow-Fiber Membranes

Elisabeth Perea, Palitha Jayaweera, Srinivas Bhamidi, Xiao Wang, Regina Elmore, Indira Jayaweera*

Summary: Polybenzimidazole (PBI) hollow-fiber membranes (HFMs) developed at SRI exhibit excellent thermal/chemical stability and can be chemically and physically optimized for various commercial gas or liquid separation applications. PBI is a commercially available polymer, and the membrane modules assembled at SRI have been successfully demonstrated for both CO₂ capture from syngas and water desalination. New applications include flue gas desulfurization (FGD) wastewater treatment and CO₂ removal from flue gas streams. Contact: Indira S. Jayaweera, Senior Staff Scientist/Program Manager, indira.jayaweera@sri.com, +1-650-859-4042

Gas Separation

CO₂-rejecting membrane for H₂ recovery from syngas (current DOE project, DE-FE0012965)

Figure 2. Comparison of measured H_2/CO_2 selectivity for GEN-1 (150 GPU) and GEN-2 (100 GPU) modules.

SRI's 50-kW_{th} skid operated for more than 600 hours at the NCCC in April 2017.

m-Polybenzimidazole

(m-PBI)

Figure 1. Observed CO₂ capture for GEN-1 membrane element with changing temperature when operating with syngas. Data for a stage cut at 40% are shown.

Temperature effect: The membrane performance is greatly enhanced as the temperature increases; more than 90% CO₂ capture is possible with air-blown syngas at temperatures >180°C.

- No need to cool syngas
- Reduces CO₂ compression costs
- Emission free
- Low maintenance
- Modular

Novel Concept: CO₂-rejecting membranes (CRM) for concentrating dilute CO₂ flue gas streams

Doped PBI hollow-fiber membrane with pKa < 4 to reject CO_2 and transport N_2 *SRI's current high-temperature PBI membranes are already CO₂-rejecting (pKa 5.4)

Same architecture as PBI *Composite for desalination can be* used in CO₂-rejecting membranes

Figure 3. Concentration profiles across the HFM wall thickness.

Feed: 5% CO2 & 95% N2 N2 selective membrane

Retentate: 20% CO2 & 80% N2

Benefits of CO₂-rejecting and N₂-permeating membranes:

- 1) Standalone technology for concentrating dilute CO₂ streams
- 2) May be used in series with conventional CO₂-permeating membrane systems
- 3) Tolerant of O_2 , H_2O vapor, and SO_2 in the flue gas
- May be used for concentrating SO_2
- 5) Operates at higher temperature than conventional membranes

Figure 5. Enerfex modeling shows the concentration of CO₂ can be doubled using a CRM with N_2/CO_2 selectivity >100 and 65 psi pressure differential.

Seawater and brackish water desalination \rightarrow high water flux per module.

Approach: Start with high-flux membranes (smaller air gap during spinning leads to a thinner dense layer and a greater porosity of the support structure). Apply a coating to increase the salt rejection. A polyamide coating is applied to the exterior or lumen of fibers through bonded interfacial polymerization. Coating the lumen is preferable to avoid scale formation on the coating.

Novel Concept: FGD wastewater treatment and water recovery

To maintain optimum operating conditions in a wet scrubber, a purge stream is discharged from the system (primarily for chloride control to allow efficient SO₂ removal and corrosion control). This aqueous purge stream (FGD blowdown) is *acidic* (pH ~ 4-6) supersaturated with gypsum(*CaSO*₄*2H*₂*O*) and contains high total dissolved solids (TDS) and total suspended solids (TSS).

The TDS is composed of heavy metals, chlorides, sulfates, calcium, magnesium, and dissolved organic compounds.

Acknowledgements

The authors wish to acknowledge:

(Contract No. N00014-10-C-0059).

Disclaimer

This poster may include an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Liquid Separation

Why hollow-fiber membranes? Packing density 5-10x higher than spiral-wound membranes

Hollow-fiber membrane architecture for high salt rejection and high flux

Reduced scaling: suitable for treating wastewater from FGD blowdown

PBI and CA membranes. Source for Zeta

SRI data for PBI HFM for sulfate removal: >99% removal with 10 liter/m² hr water flux at 20 bar (2000 to 5000 sulfate)

• The support for gas-phase technology development from the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (Contract No. DE-FE0012965) and the partners – PBI Performance Products; Enerfex, Inc.; Generon, IGS; and Kevin O'Brien. The current support for desalination development is from King Abdulaziz City for Science & Technology (KACST); previous support was from the Office of Naval Research (ONR) of the US Department of Defense